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A thermodynamic minimum principle valid for photon radiation is shown to
hold for arbitrary geometries. It is successfully extended to neutrinos, in the zero
mass and chemical potential case, following a parallel development of photon
and neutrino statistics. This minimum principle stems more from that of Planck
than that of classical Onsager�Prigogine irreversible thermodynamics. Its exten-
sion from bosons to fermions suggests that it may have a still wider validity.
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1. INTRODUCTION

Photon radiation has a distinctive quality in that it interacts little enough
with matter that it is typically far from thermal equilibrium even when
matter may be close to equilibrium. This is the origin of classical radiative
transfer, (1, 2) which represents a link between far-from-equilibrium proper-
ties of radiation to the near-equilibrium thermodynamics of matter, leading
to some curious thermodynamical consequences.(3, 4) These in particular
concern minimum entropy production in a non-equilibrium steady state
(NESS). This is a property distinct from the classical theory of irreversible
thermodynamics, (5) as few of the requirements for that theory hold: one
does not even have a local thermodynamical bilinear form of entropy
production.(3, 6)
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Is this distinctive linkage one that may only be found in the domain
of bosons? The answer is surely not, as neutrinos, which are fermions, are
even more tenuously linked to matter than photons. However, a beam of
neutrinos, unlike one of photons, is not at all the norm. In the case of fer-
mions, in contrast, we must turn to the atypical domains of a supernova
and the early Universe to have macroscopic beams interacting meaning-
fully at a thermodynamical level with matter. These physical situations
involve a boundary in space or time between neutrino equilibrium and
non-equilibrium. If we allow neutrino production without effective absorp-
tion, ordinary stars provide another example domain.

However, the question is to what extent the thermodynamical proper-
ties that hold for photons also hold for neutrinos. That is, is there a similar
minimum principle for entropy production in the case of neutrino radia-
tion? This paper addresses this question by generalizing ``radiation'' to
include any exactly or nearly massless particles whose number is not con-
served. We consider only the case of matter in local thermal equilibrium
(LTE) and where macroscopic thermodynamics is valid, not the more
general case when LTE breaks down and kinetic theory is necessary.(7)

We proceed here with the assumption that the rest mass and chemical
potential of neutrinos are zero. Clearly a more comprehensive treatment
must include the possibility that neither is zero.(8) However there are
advantages to proceeding in this manner in the first instance. By making
this choice we ensure that the neutrinos are as much like the photons as
possible. The rest mass is not so much a problem here as is the chemical
potential. A non-zero chemical potential presents a qualitative departure
from the thermodynamic properties of photons in that it implies an addi-
tional independent thermodynamical variable. However, what is learned in
this case can be a guide to future work.

We find that neutrinos have an entropy production minimum principle
in the steady state similar to that of photons, which also manifests itself as
a conservation principle for energy. Implicit in weak reactions involving
neutrinos is the conservation, not only of electric charge Q, but of lepton
number L and baryon number B as well. Q, B, and L conservation in weak
reactions play a non-trivial role, unlike Q in purely electromagnetic pro-
cesses. These quantities are assumed to be exactly conserved in the micro-
scopic sense. But conservation in this paper may also have a secondary
thermodynamical meaning: absence of sources or sinks of these numbers in
the form of macroscopic, thermodynamic reservoirs.

We proceed in a parallel manner between photons and neutrinos in
order to highlight differences and similarities and to link with the previous
work on photons.
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II. GENERAL DEFINITIONS AND RELATIONS

Phase space for both neutrinos and photons is defined by position r,
momentum p, implying energy =. In the case of photons it is often
customary to introduce frequency & as a proxy for energy and wave number
k instead of momentum. The energy of unpolarized particles in the phase
space volume d 3p d 3r is

2n=
d 3p d 3r

h3 (1)

where n is the mean occupation number for either photons or neutrinos. h
is Planck's constant. The entropy of that same volume is

2k[�(1�n) ln(1�n)&n ln n]
d 3p d 3r

h3 (2)

where k is Boltzmann's constant. The upper signs correspond to neutrinos
and the lower to photons.

A momentum-dependent temperature Tp may be introduced for this
small phase volume, by forming the derivative of entropy with respect to
energy,

1
Tp

=
k
=

ln(n&1�1) (3)

which takes its physical meaning from the time-independent steady state of
noninteracting quanta. This makes the cell indistinguishable from one that
shares the same temperature with all other cells. We extend this naturally
to neutrinos given the assumptions of the paper: the rest mass m& and the
chemical potential +& are both zero. One finds

d 3p d 3r
h3 =\kTp

hc +
3

x2 dx d0 d 3r (4)

given the new variable x such that == pc, x==�kTp , and d 3p= p2 dp d0,
where d0 is an element of solid angle.

In thermal equilibrium,

np =
1

ex\1
(5)
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and we may drop the subscript p on the temperature. The energy in the
phase volume may then be written

2(kT )4

(hc)3

x3

(ex\1)
dx d0 d 3r (6)

From this we note that when an integration over x is carried out that the
fourth-power law follows for both photons and neutrinos. The only dif-
ference between the two is in the numerical factor of the integral due to the
``\'' in the denominator in the integrand of the x integration. The entropy
of the phase volume is treated similarly. After some simple manipulations
it becomes

2k(kT )3

(hc)3 _ x3

(ex\1)
\x2 ln(1\e&x)& dx d0 d 3r (7)

This implies the expected third-power behaviour for entropy in equi-
librium, for neutrinos as well as photons.

The four integrals:

|
�

0

x3

(ex\1)
dx=

15�1
16 \?4

15+ (8)

and

|
�

0
\x2 ln(1\e&x) dx=

15�1
16 \1

3+\
?4

15+ (9)

are easily deduced by simple series expansions. From these we find the
energy per unit volume into solid angle d0,

15�1
16 \ _

?c+ T 4 d0 (10)

where _=2k4?5�(15c2h3), the Stefan-Boltzmann constant. Similarly for the
entropy,

\4
3+

15�1
16 \ _

?c+ T 3 d0 (11)
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The vector flux density of energy into solid angle d0 with direction m̂ is

15�1
16 \_

?+ T 4m̂ d0 (12)

and for entropy,

\4
3+

15�1
16 \_

?+ T 3m̂ d0 (13)

The integrals (8, 9) give the canonical fermion factor of 7�8 relative to
bosons. We conclude that the flux density per solid angle, known variously
as the specific intensity or radiance, is for energy,

15�1
16 \_

?+ T 4 (14)

and for entropy,

\4
3+

15�1
16 \_

?+ T 3 (15)

Even out of equilibrium, we may relate the specific intensity I= , for a
given =, to n from Eqs. (1) and (4) and the flux density into a solid angle,

I==
2n==3

h3c2 (16)

The specific entropy intensity is

J==
2k=2

h3c2 _� \1�
c2h3I=

2=3 + ln \1�
c2h3I=

2=3 +&\c2h3I=

2=3 + ln \c2h3I=

2=3 +& (17)

The fundamental extensive quantities are the specific entropy flux J= and
specific energy flux I= . Note that expression (3) is recovered by forming
dJ=�dI= .

Although neutrino number is not conserved, lepton number is, and it
is thus physically important to define a specific number flux for neutrinos
N= corresponding to I= :

N==
2np=2

p

h3c2 (18)
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where

I===N= (19)

In the case of photons, number is not interesting, as photon number
is not conserved. In the case of fermions, some number conservation law
always holds (because of the half-integral spins). With zero chemical poten-
tial, however, the neutrino number is a purely auxiliary quantity and
depends on the energy flux. Conversely, we could take neutrino number as
fundamental and energy as derived; in either case, only one variable is
independent. In the case of non-zero chemical potential, not treated in this
paper, neutrino number and energy flux become independent variables,
with an energy-dependent chemical potential += .

III. ENTROPY PRODUCTION AND ENTROPY FLOWS

Entropy is an extensive thermodynamic property and can be localized
and integrated to determine a global amount. Localization is also possible
for entropy production itself. This result agrees with the general principle
of the locality of physical interactions, so long as a thermodynamical
picture is valid. It also means that thermodynamics is not restricted to a
macroscopic box. If we divide space into distinct regions, boundary sur-
faces are defined; entropy can be moved between regions and the notion of
entropy flux across a surface follows.

The entropy production rate can be expressed in a balance or conser-
vation equation,

=s=
�s
�t

+{ } F (20)

where =s is the entropy production rate per unit volume, s is the volume
density of entropy, and F is the entropy flux density.

It is only by convention that this equation is called a conservation
equation. It is really an accounting equation, with no implication of conser-
vation. In fact, this equation allows a general statement of the second law
of thermodynamics: =s�0.

A somewhat artificial distinction may be made now in Eq. (20),
between radiative and matter processes. In the former case we necessarily
must always consider full phase space, while in the latter we assume a near-
equilibrium distribution in energy, nearly identical in all directions (so-
called ``local thermal equilibrium'' or LTE). In that case we find

=s==m
s +=#

s (21)
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where the superscript m denotes non-radiative components which shall be
termed ``matter.'' # denotes radiative components. Writing these entropy
sources out explicitly we have,

=s=
�sm

�t
+

�s#

�t
+{ } Ys+{ } H (22)

where sm is the volume density of entropy in matter, and s# is the volume
density of entropy in radiation. Ys and H denote non-radiative and
radiative entropy flux densities, respectively.

As radiation we mean here, of course, photons or neutrinos, while
other particles take the role of being non-radiative and in LTE. A mixture
of near-equilibrium (LTE) matter and the far-from-equilibrium radiation is
a typical one in the Universe. It is the mixture in which you are immersed
while reading this page: you are warm, and yet you can read these words
radiatively.

By using the equations of state and balance equations for extensive
variables we re-express the entropy production rate in the form(9)

=s=:
k

[ak=k+{ak } Y$k]+
�sr

�t
+{ } H (23)

where the sum is over contributions from extensive variables with index k.
ak is the conjugate intensive variable divided by the temperature. =k is the
creation rate of variable k (for example, the rate that internal energy is
created from the radiation field, nuclear reactions, or viscous dissipation).
Y$k is the flux density of variable k (for example, the flux density of internal
energy in the case of diffusion). The prime denotes the value in the rest
frame of the medium. As massless radiation is without a rest frame, the
separation of the entropy production into these two parts thus turns out to
be not at all artificial.

If we assume in (22) a steady radiation field, and integrate over a finite
volume V bounded by a surface S, with element dS, containing all of the
matter, then the overall entropy production rate 7 is

7=|
V

�sm

�t
dV+|

S
H } dS (24)

because matter fluxes must vanish across S.
If we ignore matter transport processes, Eq. (23) becomes

7=|
V

:
k

[ak=k] dV+|
S

H } dS (25)
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We may arrive at this result, alternatively, by imagining that the process is
steady and that the entropy change of matter (the first integral) is revers-
ibly drained off to a heat or another type of reservoir. That is, for this
steady case, we deal only with a subsystem, thermodynamically speaking,
and so conservation laws do not hold macroscopically (i.e., integrated) in
the subsystem alone. Of course this has no bearing on microscopic conser-
vation laws.

It is worth noting that the terms under the first integral of (25) are all
due to processes in matter and are not a part of the entropy production for
photons or neutrinos. It is a common misconception to interpret the radia-
tion heating rate over the temperature, which is a possible term under the
first integral, as the entropy production of radiation. It should be clear
from this construction that �V =#

s dV is all accounted for through the second
integral of (25).

IV. MINIMUM ENTROPY PRODUCTION

Equation (25) provides a structure for computing the entropy produc-
tion rate due to the interaction of matter and radiation for many finite
bodies locally in equilibrium. The first term represents whatever changes
are manifest in the entropy of the body while the second term accounts for
changes in the radiation field itself due to the interaction.

If photon radiation is impinging on a body of temperature T in a
vacuum, the entropy production rate is from (25) just

7=|
V \&

{ } F
T + dV+|

S
H } dS (26)

where the volume V is any containing the body, and F is the flux density of
energy radiation. The latter is the integral over all solid angles and energy
of I= n̂, where n̂ is the unit vector defining the direction that I= (Eq. (16)) flows
in. If the temperature is (artificially held) uniform over the body, then

7=&
1
T |

S
F } dS+|

S
H } dS (27)

If the surface area of the body is A, and it emits as a black body, then

7=
1
T {} |S

Fi } dS }&_T 4A=& } |S
Hi } dS }+4

3
_T 3A (28)
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where the remaining integrals represent impinging photon radiation, and
the superscript i denotes an impinging flow only, which is independent of
the state of the body.

It follows that

d7
dT

=&
1

T 2 {} |S
Fi } dS }&_T 4A= (29)

or for a minimum

{} |S
Fi } dS }&_T 4A==0 (30)

That is, the entropy production rate is a minimum in the steady state,
implying energy conservation, (3, 10) but for for an arbitrary geometry and
impinging field.

Equations (26) to (30) could represent the entropy production of a
(black) planet irradiated by photons originating elsewhere from a star, or
could represent a gas cloud under similar photon radiation. They could
also represent the entropy production of a target of matter irradiated by a
laser. One can envisage matter in the laboratory as being connected to a
heat bath, or circumstances where the heat capacity is very high, to justify
the steady, isothermal construction of the rate of entropy change in matter
(first term in (26)). Obviously the isothermal construction may be
relaxed(10) using the equations of Section III, but that is beyond the scope
of this paper.

While these equations represent an extension of previous work(3, 10) to
arbitrary matter and radiation geometries, the remarkable thing about
them is that they represent a minimum entropy production principle that
is foreign to the classical minimum entropy production principle of
Prigogine.(5) There are no Onsager reciprocity relations, no ``linear'' empiri-
cal flux-force laws, and no meaningful thermodynamical fluxes and forces.
In the latter regard, there need only be one temperature defined for the
entire problem.

The question of whether this remarkable property is restricted to
boson radiation in the from of photons has not been put previously, so we
now consider the corresponding problem for fermions in the form of
neutrinos. As in the case of photons we turn to Eq. (25), but at this point
the differences between photons and neutrinos emerge, not in the second
(radiation) term, but in the first (matter) term. That is because of the dif-
ferent manner in which neutrinos interact with matter. While photons do
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not conserve their number and trivially conserve electric charge, neutrinos
are linked to the conservation of charge, lepton number, and baryon num-
ber through the structure of weak interactions. Here we consider only first-
generation fermions and only nucleons for hadrons:

&+n � p+e& (31)

and all related reactions. Thus for neutrinos (25) becomes

7=|
V \&

{ } F
T

+
+en* e++nn* n++p n* p

T + dV+|
S

H } dS (32)

Recall that +&=0 is assumed for neutrinos. n* e , n* n , and n* p represent rates of
change of number densities for electrons, neutrons and protons respec-
tively, each of which is multiplied by its corresponding chemical potential.
Assuming chemical equilibrium within the matter,

+e++p&+n=0 (33)

This, together with an isothermal and black body (neutrino) assumption,
leads to

7=
1
T {} |S

Fi } dS }&7
8

_T 4A=+|
V

1
T

[+n(n* n+n* p)++e(n* e&n* p)] dV

& } |S
H i } dS }+7

8
}
4
3

_T 3A (34)

Conservation of baryon number and charge produce

7=
1
T {} |S

Fi } dS }&7
8

_T 4A=& } |S
Hi } dS }+7

8
}
4
3

_T 3A (35)

Except for the factors of (7�8), this equation is identical to (28). Thus
in minimum entropy production, the energy balance steady state

{} |S
Fi } dS }&7

8
_T 4A==0 (36)

must hold as well. Thus we find that this distinctive minimum entropy
production result is extended to neutrinos, and thereby beyond the limita-
tion to bosons to at least some fermions.
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V. LOCAL AND NONLOCAL REGIMES

Generally, the interactions of neutrinos and photons with matter are
most simply viewed as purely local. For statistical physics, however, we
also need to count momentum states. If we make the matter-radiation
separation of Section 3 and further assume LTE for matter, the matter
momentum states can be integrated out, leaving the full phase space only
for radiation. This condition allows us to avoid a full kinetic theory
calculation.(7) At this juncture, we have a choice of local versus action-at-a-
distance representation for the radiation.

While the radiation exists in its own right, in the event that the overall
entropy of the radiation field is not changing, we need only be concerned
with matter-matter interactions mediated by radiation, as the radiation
terms can be then be integrated out. Radiation then becomes merely a spe-
cial kind of nonlocal heat transport, and 7 may be represented in a multi-
local form. This multilocal form is at least true for the first term in (25)
even when separate changes do take place in the radiation field, such as in
conservative scattering processes.(6) In all cases, it is the total 7 that is min-
imised.

In the case of quanta in an extended, continuous medium, a common
matter-radiation LTE is often valid, with a common matter-radiation tem-
perature T (r). This temperature in general is not constant in space. LTE
holds to extremely high accuracy for photons inside the photospheric sur-
face of a star, for example, but not for neutrinos. The entropy production
associated with the production and transport (diffusion) of photons is

7#=| dV[(1�2)[4acT 5�(3}#)][{(1�T )]2+=#�T ] (37)

where =# is the photon energy production rate density and }# is the opacity
(inverse mean free path) of the matter against photon diffusion.(11) Equa-
tion (37) corresponds to the second term in Eq. (25), but written as a
volume integral of a divergence, up to but not including the photosphere.
This is in contrast to photon entropy production discussed previously in
this paper, in that the photons here are virtually in equilibrium with matter
and so are diffusive, not radiative.

At the photospheric surface, a single LTE ceases to hold (see below),
and the diffusive approximation of Eq. (37) breaks down. Nonetheless the
second term of (25) still represents the entropy production in the radiation
field, but at the photosphere and outside, the photons become radiative.
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The complete photon entropy production of a star of radius R (including
its photosphere) is

7#, sur=
4
3 _T 3

sur(4?R2) (38)

for the photon radiation released into empty space at an idealised sharp
surface. (Tsur is the photospheric surface temperature.) As the volume of
integration is increased 7# picks up additional contributions to interactions
with more matter, for example, with a planet.(3, 4, 10, 12)

Neutrinos emitted by ordinary stars are quite different from photons:
as the interior temperatures are not high enough for weak interactions to
be in LTE, the neutrinos are not emitted in anything like a blackbody dis-
tribution, and are not subsequently thermalised. Their spectra are instead
determined almost exactly by the microscopic reaction spectra and emerge
essentially unaffected by the neutrinos' subsequent travel through stellar
matter to empty space. If the emitting star does not absorb neutrinos and
the receiving Earth-bound detector does not emit neutrinos, the total
neutrino entropy production is

7&=|
emitter

dV | d 3p
=pn* p

Tp

&|
receiver

dV$ | d 3p$
=p$n* p$

Tp$

(39)

where n* p (n* p$) is the neutrino production (absorption) rate density in real
and momentum space. In a NESS, n* p depends only on =p , not on emission
direction p̂.

In an equilibrated supernova or the early Universe, on the other hand,
the neutrinos are emitted and absorbed in LTE. The entropy production
below the supernova neutrinosphere is a function of a single local tem-
perature:

7&=| dV[(1�2)[7acT 5�(6}&)][{(1�T )]2+=&�T ] (40)

like (37), with a neutrino mean free path 1�}& and an extra factor of 7�8
in the diffusion part. The total 7& including the neutrinosphere is analogous
to (38). An analogous expression can be constructed for photon and
neutrino entropy production in the early Universe before their respective
decouplings, but this would require inclusion of general relativity.

Even if the neutrinos or photons are emitted and absorbed locally as
a gas, the system in general is not in equilibrium with a single temperature
T or T (r). Multiple temperatures can be defined if each system component
retains its own LTE, with each component spectrum thermal. For example,
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a photon gas with a frequency-dependent temperature T# may interact with
matter of temperature T. Then

7#=| dV | d= | d0 I=(r, =, 0) _ 1
T#(r, =, 0)

&
1

T (r)& (41)

I= is the local specific energy intensity of photons emitted by the matter. If
T#>T, then I=�0; if T#<T, then I=�0. Thus 7# is always �0. Stellar
atmospheres provide a related example. The radiation has a temperature
T#(r), while the various chemical species Xl each can have their own Tl (r).
Thus

7#=:
l
| dV | d= | d0 I=(r, =, 0) _ 1

T#(r, =, 0)
&

1
Tl (r)& (42)

Again I= is the local specific radiation intensity emitted by the matter. Con-
tributions such as (41) or (42) occur in addition to such gradient terms as
(37) or (40).

In a supernova, (13) the matter and the neutrinos can have different
temperatures T and T& , and 7& picks up a contribution analogous to (41).
The total 7 again has other contributions, e.g., from gradients of T, T# ,
and T& such as (37) and (40).

Neutrinos can interact among themselves by weak neutral currents
and change their own phase space distribution without any ordinary matter
present. The associated entropy production is

7NC
& =| dV | d= | d0 | d=$ | d0$ I==$(r, =, =$, 0, 0$)

__ 1
T&(r, =, 0)

&
1

T&(r, =$, 0$)& (43)

which is local in form. I==$(r, =, =$, 0, 0$) is the local doubly-specific radia-
tion intensity of the neutrinos ``shining'' on themselves and is proportional
to the neutrino-neutrino weak neutral current reaction cross section. 7NC

&

vanishes if thermal equilibrium obtains and there is only a single tem-
perature, Tp =Tp$ for all p, p$, at each point r.

VI. SUMMARY AND CONCLUSION

A non-zero density of entropy production, 7, indicates a local process
of an irreversible nature. It is distinct from the local density of entropy, and
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it has no direct implications for processes elsewhere. For any given process,
one may measure local nearness to equilibrium by its magnitude, although
relative nearness of two different processes may have no meaning by this
measure. If a single process is free, one expects that the entropy production
rate will relax toward zero. If some exterior conditions prevent this
dynamical relaxation, the process will instead simply relax as far as the
exterior arrangements permit.

This dynamical argument anticipates minimum entropy production, at
least for sufficiently simple systems where thermodynamic quantities have
meaning. But it also anticipates, as thermodynamics often does, an
analogous static construction of the same principle, as the relaxation may
be imagined to be constrained to quasi-steady conditions in whatever state
it may be.

Thus the principle of minimum entropy production found here is not
unexpected. However in many respects it is very different from the classical
minimum entropy production principle of Prigogine.(5) It does not depend
on Onsager's principle; there are no ``linear'' empirical flux-force laws, nor
is there even a meaningful bilinear construction.

Under the LTE-NESS assumption, systems of both matter(5) and
photons(3, 4, 10, 11) exhibit some type of minimum entropy production.
A photon-like principle holds, under the same assumptions, for neutrinos,
as seen in examples given in Sections IV and V. These examples can be
generalized to many local or continuously varying temperatures.

Conservation laws play identical roles in all three cases, by constrain-
ing the microscopic interactions of the quanta. Thus, microscopic energy
and momentum are always conserved, with all the appropriate macro-
scopic consequences. Because neutrinos and photons are both taken here as
massless and not conserved in number, the analogy between these two par-
ticles can be carried through in most aspects. However, neutrinos are fer-
mions, which always have some associated conservation law; in this case,
lepton number L. Because the weak interactions conserve B&L, baryon
number B is also conserved. Electromagnetic interactions conserve charge,
but since photons themselves do not carry charge, this conservation law is
trivial in radiative transfer, in contrast to the situation for neutrinos, which
do carry L.

The exact masslessness of neutrinos is not proven experimentally, (14)

and a logical generalization of our results here is to extend the treatment
to massive neutrinos. Although we have used an electron chemical poten-
tial +e in matter, another generalization left open is to include a neutrino
chemical potential +v . These two extensions will be presented in a subse-
quent publication.(8)
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